Struct rusty_machine::learning::logistic_reg::LogisticRegressor
[−]
[src]
pub struct LogisticRegressor<A> where A: OptimAlgorithm<BaseLogisticRegressor> { /* fields omitted */ }
Logistic Regression Model.
Contains option for optimized parameter.
Methods
impl<A: OptimAlgorithm<BaseLogisticRegressor>> LogisticRegressor<A>
[src]
fn new(alg: A) -> LogisticRegressor<A>
Constructs untrained logistic regression model.
Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor; use rusty_machine::learning::optim::grad_desc::GradientDesc; let gd = GradientDesc::default(); let mut logistic_mod = LogisticRegressor::new(gd);
fn parameters(&self) -> Option<&Vector<f64>>
Get the parameters from the model.
Returns an option that is None if the model has not been trained.
Trait Implementations
impl<A: Debug> Debug for LogisticRegressor<A> where A: OptimAlgorithm<BaseLogisticRegressor>
[src]
impl Default for LogisticRegressor<GradientDesc>
[src]
Constructs a default Logistic Regression model using standard gradient descent.
fn default() -> LogisticRegressor<GradientDesc>
Returns the "default value" for a type. Read more
impl<A> SupModel<Matrix<f64>, Vector<f64>> for LogisticRegressor<A> where A: OptimAlgorithm<BaseLogisticRegressor>
[src]
fn train(&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>)
-> LearningResult<()>
inputs: &Matrix<f64>,
targets: &Vector<f64>)
-> LearningResult<()>
Train the logistic regression model.
Takes training data and output values as input.
Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor; use rusty_machine::linalg::Matrix; use rusty_machine::linalg::Vector; use rusty_machine::learning::SupModel; let mut logistic_mod = LogisticRegressor::default(); let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]); let targets = Vector::new(vec![5.0, 6.0, 7.0]); logistic_mod.train(&inputs, &targets).unwrap();
fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>
Predict output value from input data.
Model must be trained before prediction can be made.