Module rusty_machine::learning::logistic_reg
[−]
[src]
Logistic Regression module
Contains implemention of logistic regression using gradient descent optimization.
The regressor will automatically add the intercept term so you do not need to format the input matrices yourself.
Usage
use rusty_machine::learning::logistic_reg::LogisticRegressor; use rusty_machine::learning::SupModel; use rusty_machine::linalg::Matrix; use rusty_machine::linalg::Vector; let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]); let targets = Vector::new(vec![0.,0.,1.,1.]); let mut log_mod = LogisticRegressor::default(); // Train the model log_mod.train(&inputs, &targets).unwrap(); // Now we'll predict a new point let new_point = Matrix::new(1,1,vec![10.]); let output = log_mod.predict(&new_point).unwrap(); // Hopefully we classified our new point correctly! assert!(output[0] > 0.5, "Our classifier isn't very good!");
We could have been more specific about the learning of the model
by using the new
constructor instead. This allows us to provide
a GradientDesc
object with custom parameters.
Structs
BaseLogisticRegressor |
The Base Logistic Regression model. |
LogisticRegressor |
Logistic Regression Model. |