1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//! Logistic Regression module
//!
//! Contains implemention of logistic regression using
//! gradient descent optimization.
//!
//! The regressor will automatically add the intercept term
//! so you do not need to format the input matrices yourself.
//!
//! # Usage
//!
//! ```
//! use rusty_machine::learning::logistic_reg::LogisticRegressor;
//! use rusty_machine::learning::SupModel;
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::linalg::Vector;
//!
//! let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
//! let targets = Vector::new(vec![0.,0.,1.,1.]);
//!
//! let mut log_mod = LogisticRegressor::default();
//!
//! // Train the model
//! log_mod.train(&inputs, &targets).unwrap();
//!
//! // Now we'll predict a new point
//! let new_point = Matrix::new(1,1,vec![10.]);
//! let output = log_mod.predict(&new_point).unwrap();
//!
//! // Hopefully we classified our new point correctly!
//! assert!(output[0] > 0.5, "Our classifier isn't very good!");
//! ```
//!
//! We could have been more specific about the learning of the model
//! by using the `new` constructor instead. This allows us to provide
//! a `GradientDesc` object with custom parameters.

use linalg::{Matrix, BaseMatrix};
use linalg::Vector;
use learning::{LearningResult, SupModel};
use learning::toolkit::activ_fn::{ActivationFunc, Sigmoid};
use learning::toolkit::cost_fn::{CostFunc, CrossEntropyError};
use learning::optim::grad_desc::GradientDesc;
use learning::optim::{OptimAlgorithm, Optimizable};
use learning::error::Error;

/// Logistic Regression Model.
///
/// Contains option for optimized parameter.
#[derive(Debug)]
pub struct LogisticRegressor<A>
    where A: OptimAlgorithm<BaseLogisticRegressor>
{
    base: BaseLogisticRegressor,
    alg: A,
}

/// Constructs a default Logistic Regression model
/// using standard gradient descent.
impl Default for LogisticRegressor<GradientDesc> {
    fn default() -> LogisticRegressor<GradientDesc> {
        LogisticRegressor {
            base: BaseLogisticRegressor::new(),
            alg: GradientDesc::default(),
        }
    }
}

impl<A: OptimAlgorithm<BaseLogisticRegressor>> LogisticRegressor<A> {
    /// Constructs untrained logistic regression model.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::logistic_reg::LogisticRegressor;
    /// use rusty_machine::learning::optim::grad_desc::GradientDesc;
    ///
    /// let gd = GradientDesc::default();
    /// let mut logistic_mod = LogisticRegressor::new(gd);
    /// ```
    pub fn new(alg: A) -> LogisticRegressor<A> {
        LogisticRegressor {
            base: BaseLogisticRegressor::new(),
            alg: alg,
        }
    }

    /// Get the parameters from the model.
    ///
    /// Returns an option that is None if the model has not been trained.
    pub fn parameters(&self) -> Option<&Vector<f64>> {
        self.base.parameters()
    }
}

impl<A> SupModel<Matrix<f64>, Vector<f64>> for LogisticRegressor<A>
    where A: OptimAlgorithm<BaseLogisticRegressor>
{
    /// Train the logistic regression model.
    ///
    /// Takes training data and output values as input.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::logistic_reg::LogisticRegressor;
    /// use rusty_machine::linalg::Matrix;
    /// use rusty_machine::linalg::Vector;
    /// use rusty_machine::learning::SupModel;
    ///
    /// let mut logistic_mod = LogisticRegressor::default();
    /// let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]);
    /// let targets = Vector::new(vec![5.0, 6.0, 7.0]);
    ///
    /// logistic_mod.train(&inputs, &targets).unwrap();
    /// ```
    fn train(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>) -> LearningResult<()> {
        let ones = Matrix::<f64>::ones(inputs.rows(), 1);
        let full_inputs = ones.hcat(inputs);

        let initial_params = vec![0.5; full_inputs.cols()];

        let optimal_w = self.alg.optimize(&self.base, &initial_params[..], &full_inputs, targets);
        self.base.set_parameters(Vector::new(optimal_w));
        Ok(())
    }

    /// Predict output value from input data.
    ///
    /// Model must be trained before prediction can be made.
    fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>> {
        if let Some(v) = self.base.parameters() {
            let ones = Matrix::<f64>::ones(inputs.rows(), 1);
            let full_inputs = ones.hcat(inputs);
            Ok((full_inputs * v).apply(&Sigmoid::func))
        } else {
            Err(Error::new_untrained())
        }
    }
}

/// The Base Logistic Regression model.
///
/// This struct cannot be instantianated and is used internally only.
#[derive(Debug)]
pub struct BaseLogisticRegressor {
    parameters: Option<Vector<f64>>,
}

impl BaseLogisticRegressor {
    /// Construct a new BaseLogisticRegressor
    /// with parameters set to None.
    fn new() -> BaseLogisticRegressor {
        BaseLogisticRegressor { parameters: None }
    }
}

impl BaseLogisticRegressor {
    /// Returns a reference to the parameters.
    fn parameters(&self) -> Option<&Vector<f64>> {
        self.parameters.as_ref()
    }

    /// Set the parameters to `Some` vector.
    fn set_parameters(&mut self, params: Vector<f64>) {
        self.parameters = Some(params);
    }
}

/// Computing the gradient of the underlying Logistic
/// Regression model.
///
/// The gradient is given by
///
/// X<sup>T</sup>(h(Xb) - y) / m
///
/// where `h` is the sigmoid function and `b` the underlying model parameters.
impl Optimizable for BaseLogisticRegressor {
    type Inputs = Matrix<f64>;
    type Targets = Vector<f64>;

    fn compute_grad(&self,
                    params: &[f64],
                    inputs: &Matrix<f64>,
                    targets: &Vector<f64>)
                    -> (f64, Vec<f64>) {

        let beta_vec = Vector::new(params.to_vec());
        let outputs = (inputs * beta_vec).apply(&Sigmoid::func);

        let cost = CrossEntropyError::cost(&outputs, targets);
        let grad = (inputs.transpose() * (outputs - targets)) / (inputs.rows() as f64);

        (cost, grad.into_vec())
    }
}