Module rusty_machine::learning::gp
[−]
[src]
Gaussian Processes
Provides implementation of gaussian process regression.
Usage
use rusty_machine::learning::gp; use rusty_machine::learning::SupModel; use rusty_machine::linalg::Matrix; use rusty_machine::linalg::Vector; let mut gaussp = gp::GaussianProcess::default(); gaussp.noise = 10f64; let train_data = Matrix::new(10,1,vec![0.,1.,2.,3.,4.,5.,6.,7.,8.,9.]); let target = Vector::new(vec![0.,1.,2.,3.,4.,4.,3.,2.,1.,0.]); gaussp.train(&train_data, &target).unwrap(); let test_data = Matrix::new(5,1,vec![2.3,4.4,5.1,6.2,7.1]); let outputs = gaussp.predict(&test_data).unwrap();
Alternatively one could use gaussp.get_posterior()
which would return both
the predictive mean and covariance. However, this is likely to change in
a future release.
Structs
ConstMean |
Constant mean function |
GaussianProcess |
Gaussian Process struct |
Traits
MeanFunc |
Trait for GP mean functions. |