Module rusty_machine::learning::gmm
[−]
[src]
Gaussian Mixture Models
Provides implementation of GMMs using the EM algorithm.
Usage
use rusty_machine::linalg::Matrix; use rusty_machine::learning::gmm::{CovOption, GaussianMixtureModel}; use rusty_machine::learning::UnSupModel; let inputs = Matrix::new(4, 2, vec![1.0, 2.0, -3.0, -3.0, 0.1, 1.5, -5.0, -2.5]); let test_inputs = Matrix::new(3, 2, vec![1.0, 2.0, 3.0, 2.9, -4.4, -2.5]); // Create gmm with k(=2) classes. let mut model = GaussianMixtureModel::new(2); model.set_max_iters(10); model.cov_option = CovOption::Diagonal; // Where inputs is a Matrix with features in columns. model.train(&inputs).unwrap(); // Print the means and covariances of the GMM println!("{:?}", model.means()); println!("{:?}", model.covariances()); // Where test_inputs is a Matrix with features in columns. let post_probs = model.predict(&test_inputs).unwrap(); // Probabilities that each point comes from each Gaussian. println!("{:?}", post_probs.data());
Structs
GaussianMixtureModel |
A Gaussian Mixture Model |
Enums
CovOption |
Covariance options for GMMs. |