Module rusty_machine::learning::glm
[−]
[src]
Generalized Linear Model module
This model is likely to undergo changes in the near future. These changes will improve the learning algorithm.
Contains implemention of generalized linear models using iteratively reweighted least squares.
The model will automatically add the intercept term to the input data.
Usage
use rusty_machine::learning::glm::{GenLinearModel, Bernoulli}; use rusty_machine::learning::SupModel; use rusty_machine::linalg::Matrix; use rusty_machine::linalg::Vector; let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]); let targets = Vector::new(vec![0.,0.,1.,1.]); // Construct a GLM with a Bernoulli distribution // This is equivalent to a logistic regression model. let mut log_mod = GenLinearModel::new(Bernoulli); // Train the model log_mod.train(&inputs, &targets).unwrap(); // Now we'll predict a new point let new_point = Matrix::new(1,1,vec![10.]); let output = log_mod.predict(&new_point).unwrap(); // Hopefully we classified our new point correctly! assert!(output[0] > 0.5, "Our classifier isn't very good!");
Structs
Bernoulli |
The Bernoulli regression family. |
Binomial |
The Binomial regression family. |
GenLinearModel |
The Generalized Linear Model |
Identity |
The Identity link function. |
Log |
The log link function. |
Logit |
The Logit link function. |
Normal |
The Normal regression family. |
Poisson |
The Poisson regression family. |
Traits
Criterion |
The criterion for the Generalized Linear Model. |
LinkFunc |
Link functions. |